Regularity of a D-Module Along a Submanifold
نویسندگان
چکیده
منابع مشابه
Submanifold Differential Operators in D-Module Theory I: Schrödinger Operators
For this quarter of century, quantum differential operators in a lower dimensional submanifold embedded or immersed in real n-dimensional euclidean space E n have been studied as physical models, which are realized as restriction of the operators in E n to the submanifold. For this decade, the Dirac operators in the submanifold have been investigated, which are identified with operators of the ...
متن کاملSubmanifold Differential Operators in D-Module Theory I: Schrödinger Operators
For this quarter of century, differential operators in a lower dimensional submanifold embedded or immersed in real n-dimensional euclidean space E n have been studied as quantum mechanical models, which are realized as restriction of the operators in E n to the submanifold. For this decade, the Dirac operators in the submanifold have been investigated in such a scheme , which are identified wi...
متن کامل0 Submanifold Differential Operators in D - Module Theory II
This article is one of a series of papers. For this decade, the Dirac operator on a submanifold has been studied as a restriction of the Dirac operator in n-dimensional euclidean space E n to a surface or a space curve as physical models. These Dirac operators are identified with operators of the Frenet-Serret relation for a space curve case and of the generalized Weierstrass relation for a con...
متن کاملSubmanifold Differential Operators in D-Module Theory I: Schrödinger Operators
For this quarter of century, quantum differential operators in a lower dimensional submanifold embedded or immersed in real n-dimensional euclidean space E n have been studied as physical models, which are realized as restriction of the operators in E n to the submanifold. For this decade, I have been investigating the Dirac operators in the submanifold, which are identified with operators of t...
متن کاملConstant mean curvature hypersurfaces condensing along a submanifold
Constant mean curvature (CMC) hypersurfaces in a compact Riemannian manifold (Mm+1, g) constitute an important class of submanifolds and have been studied extensively. In this paper we are interested in degenerating families of such submanifolds which ‘condense’ to a submanifold Kk ⊂ Mm+1 of codimension greater than 1. It is not hard to see that the closer a CMC hypersurface is (e.g. in the Hau...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Publications of the Research Institute for Mathematical Sciences
سال: 2018
ISSN: 0034-5318
DOI: 10.4171/prims/54-2-7